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ABSTRACT
We introduce a game setting called a joint process, where the his-
tory of actions determine the state, and the state and agent proper-
ties determine the payoff. This setting is a special case of stochastic
games and is a natural model for situations with alternating con-
trol. Joint process games have applications as diverse as aggre-
gate rating sites and wiki page updates. These games are related
to Black’s median voter theorem and also strongly connected to
Moulin’s strategy-proof voting schemes. When each agent has a
personal goal, we look at how the play converges under a simple
myopic action rule, and prove that not only do these simple dynam-
ics converge, but the actions selected also form a Nash equilibrium.
The convergence point is not the mean or the median of the set of
agent goals; instead we prove the convergence point is the median
of the set of agent goals and a set of focal points. This work pro-
vides the first theoretical model of wiki-type behavior and opens
the door to more questions about the properties of these games.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Multiagent Systems

General Terms
Theory, Economics

Keywords
Game Theory, Wiki, Joint Process

1. INTRODUCTION
We propose a new class of games called joint process games.

These games are general enough to describe many different situa-
tions, from rating systems to voting and wikis. There are four im-
portant features of these games. First, agents take turns performing
actions in a round robin format. Second, each agent has a personal
goal that is not influenced by the goals of other agents. Third, the
state of the world is described by a single value, influenced by all
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agent’s actions, so each agent’s payoff is the distance from the out-
come in the round to the agent’s goal. Finally, this is an infinite
game, so utility is determined by the limit average of rewards in
each round.

To get a feel for joint process games, let’s look at two different
examples. A very simple example that joint process games model
well is ratings on a Trip Advisor-like site that accepts many reviews
from users but only displays one aggregate review. Imagine a group
of travelers, each with their own opinion of how a particular hotel
should be rated. The travelers submit ratings to the site in a round
robin format. The ratings can only be positive or negative. If these
travelers behave by attempting to make the aggregate rating as close
to their own rating at each time step, what will the properties of the
joint behavior be? What will the players’ payoffs be? Will this
process reach a steady state? We answer these questions later, but
first we look at a second example of a joint process.

From Wikipedia’s founding in 2001, it has grown to almost thir-
teen million articles. However, Wikipedia, and the class of wikis
in general, still lack a crisp theoretical model of article evolution.
While a wiki can be modeled in many ways, we look at arguably
the most simple model of all: an article consisting of a single bit. A
wiki is the history of updates to this bit, and the outcome at timet is
the historical average of the article’s value. We have a set of agents
that update the wiki in a round robin fashion. Each agent has a
personal goal between zero and one, not drawn from any common
distribution, but exogenously given. While we admit our model is
basic and lacks some of the higher order interactions involved in
a wiki’s development, we feel it captures the intuition behind the
evolution of articles. The same questions we had about the rating
site apply here: will the value of the wiki converge, and to what
point?

We will shortly discuss equilibrium, but we begin by considering
a natural myopic play rule similar to fictitious play or best response
dynamics.

Myopic play in wiki games has the important property that the
outcome and the empirical distribution of each player’s actions con-
verge. The outcome converges to the median of the set of user be-
liefs unioned with a set of partition points – more on this in the next
section. We show a formal connection between this convergence
point and the mean of agent goals. Later, we also characterize all
payoffs obtainable in a Nash equilibrium of a joint process game
and show that the myopic strategies in fact form a Nash equilib-
rium themselves. These results give us insight into what behavior
suffices to produce near optimal results in a joint process, why joint
processes work well, and when they might not work as well.

The rest of the paper is organized as follows. We cover the gen-
eral model for joint processes and a specialized model for wikis in



Section 2. In Section 3 we prove convergence results, some char-
acterizations of the convergence point, and a folk theorem. In Sec-
tion 4 we discuss related work. Finally in Section 5 we conclude
and discuss future work.

2. FORMAL MODEL
First, we define a joint process.

DEFINITION 1 (JOINT PROCESS). A joint process consists of

• a finite setN (the set ofn agents)

• for each timet ∈ N, a vectorg(t) = [g
(t)
1 , . . . , g

(t)
n ], where

∀j ∈ N, g
(t)
j ∈ [0, 1] (the agents’ goals)

• for each agenti, a set of possible actionsAi

• a functionv : N 7→ N that determines the active agent at
timet

• for each timet ∈ N, the action taken by the active agent
a(t) ∈ Av(t) (we will refer to the history of actions asAt =

[a(1), a(2), . . . , a(t)])

• a functionf : At 7→ [0, 1] = o(t) (the outcome at time t)

• a distance functiond : [0, 1] × [0, 1] 7→ [0, 1]

• for each timet ∈ N, a vectorr(t) = [r
(t)
1 , . . . , r

(t)
n ],, where

∀j ∈ N, r
(t)
j = 1− d(g

(t)
j , o(t)) (the reward of each player)

At every time step only one agent will take an action (no simul-
taneous actions) and we assume that agents take their actions in a
fixed order, in round robin fashion. The state of the world is always
observable by every agent.

The reward at each time step is a function of the agent’s goal and
outcome in that time step. From now on we will assume the use of
the Euclidean distance functiond(·). At time t, agentj’s reward
is denoted asr(t)

j ∈ [0, 1]. The distance functiond implies that an
agent’s goal at timet is the outcome for which the agent receives
his greatest payoff.

This formal model can be seen a special case of stochastic
games [21], although with an infinite number of states and a de-
terministic state transition function. Other work has also consid-
ered turn-taking games [2], but without our outcome and reward
structure. We will return to discuss related work in more depth af-
ter covering our main results. As in stochastic games, we use a
method common in the literature of defining a player’s payoff in an
infinitely game.

DEFINITION 2 (AVERAGE REWARD). Given an infinite
sequence of payoffsr(1)

i , r
(2)
i , . . . for player i, the average reward

of playeri is

lim sup
k→∞

Pk

j=1 r
(j)
i

k
.

We have given the formal model, but left unspecified the action
space. As we define our specific model in the next sections, this
will be filled in. However, the features of the formal model capture
the intuition behind joint process games. Agents are involved in a
repeated interaction where they only care about the distance from
the current global outcome to their own goal. The average reward is
influenced by changes in strategy and agent’s past actions continue

to influence future rewards. In the next section, we will discuss a
refinement of this model.

Returning to our wiki example from the introduction we ask:
how can we use a joint process to model control over a wiki? First,
we specify the set of possible actions to be{0, 1}, corresponding to
a single bit update. Second, the value of the article is the historical
average of the past bits. Finally, the goals of agents are constant
over time.

Formally, we specialize the class of joint process games as fol-
lows. Let the set of possible actions for each player at every time
step be equal to{0, 1}. Let the outcome be the historical average

of past actions,f(A(t)) =
P

t

i=1 a(i)

t
= o(t).

In this setting agents have goals that do not change over time,
which we enforce to be unique. Thus for all playersj and all times

t andt′, g
(t)
j = g

(t′)
j . We will refer tog

(t)
j simply asgj .

Although this special case of the joint process model we have
just defined can be used to describe many different situations, for
the rest of the paper we will refer to it as a wiki game or the wiki
model.

3. ANALYZING WIKI GAMES
With the model specified we still ask: what dynamics occur

when this game is actually played? Looking for Nash equilibria
is one possible option, but instead we start by looking at natural
strategies. We propose modeling the behavior under myopic play,
where agents choose the action giving the highest payoff at the cur-
rent time, and ignore its effect on future rewards. Later in the pa-
per we reduce the space of possible strategies by looking at Nash
equilibrium, but we prove even later that there are many such equi-
librium points. This model can just as easily model the process of
submitting ratings to a review site.

We find that the outcome converges to an interesting value and
almost all of the player’s actions become stationary after some fi-
nite time. In the next subsection we define myopic play, then we
prove convergence, and finally we discuss some fascinating con-
nections to voting and their implications.

3.1 Myopic Play
Myopic play for wiki games is defined as follows.

DEFINITION 3 (MYOPIC PLAY ). At timet, the agent that is
active, agent i, chooses an actiona ∈ {0, 1} such that

a = argmin(d

 

gi,
a +

Pt−1
i=1 a(i)

t

!

)

The motivation behind this myopic play rule is that agents are
able to easily optimize their current period rewards, and it is natural
for them to select actions for this immediate payoff.

Just as we stated in Definition 3, at each time step, an agent will
have to decide between the action 0 or 1. It is useful both conceptu-
ally and in our later proofs to look the pair of points resulting from
the agent’s possible actions. We call this range the active window.

DEFINITION 4 (ACTIVE WINDOW). Theactive windowis the
interval between the outcome when the active agent chooses action
0 and the outcome with action1. This is written as,

"

Pt−1
i=1 a(i)

t
,
1 +

Pt−1
i=1 a(i)

t

#

(1)

The active window is a useful tool in our following proofs, and
allows an easy way to visualize the myopic decision process.



3.2 Convergence Under Myopic Play
Under the simple action choice rule of myopic play, the outcome

converges to a value that we will refer to as thecentral value. The
central value has connections to the median and mean of the set of
agent goals, a connection that we will make more exact later in this
section.

DEFINITION 5 (CENTRAL VALUE). Given a set of agentsN ,
let G be the set of agent goals,G = {gi|i ∈ {1, 2, . . . , n}}. LetP
be the set of partition values, whereP = { i

n
|i ∈ {1, 2, . . . , n −

1}}. The central value,C(N), is the median of the multisetG∪P .

The following lemma clarifies how the central value divides the
set of agents’ goals. This lemma is important to later proofs in the
paper and connects the partition points with the agent goals.

LEMMA 1. Letx be the least integer that satisfiesC(N) ≤ x
n

.
Then|{i ∈ N |gi < C(N)}| = n−x and|{i ∈ N |gi ≥ C(N)}| =
x.

PROOF. There arex − 1 partition points less thanx
n

and con-
sequentlyn − x partition points greater than or equal tox

n
. Let l

represent the number of goals less thanC(N). If C(N) is a goal,
by the definition of the median and definition 5 we have,

x − 1 + l = n − x + (n − l − 1)

2l = 2n − 2x

l = n − x,

and consequently the number of goals greater than or equal toC(N)
is x.

If C(N) is a partition point,

x − 1 + l = n − x − 1 + (n − l)

2l = 2n − 2x

l = n − x,

reaching the same conclusion.

The next results we cover are necessary to prove convergence
and concern the behavior of the active window over time. Not only
does the size of the active window decrease over time, but its posi-
tion stabilizes.

LEMMA 2. There exists aT0 such that for allt > T0, the active
window contains at most onegi.

PROOF. First, we note that the length of the active window is1
t
.

Given the set of agent goalsG, where d denotes the Euclidean dis-
tance metric, define the distance between the closest pair of goals
as,

ρ = min
i,j|i,j∈G,i6=j

d(i, j) > 0. (2)

Let T0 = ⌈ 1
ρ
⌉ and we can see that∀t > T0, 1

t
< ρ, so there

can be at most one value in the active window because the length
of the interval is small enough to prevent any other points from
simultaneous being included.

The definition of myopic play gives no explicit guarantee on the
long term behavior of the agents. But, by the nature of myopic play,
agents will respond in a predictable way according to the relative
position of their goal and the active window. Because the length of
the active window will eventually cover at most one agent’s goal, it
follows in the next lemma that the actions of all agents but at most
one are determined by what side of the active window their goal is
on.

LEMMA 3. For all times t and all agentsi such thatgi ≤
Pt−1

i=1 a(i)

t
, a(t) = 0. For all times t and all agentsi such that

gi ≥
1+

Pt−1
i=1 a(i)

t
, a(t) = 1.

PROOF. In order in minimize the distance fromgi to either end-
point of the active window, ifgi is less than the lower bound of the
active window, the distance will be minimized by agenti setting
a(t) = 0. Likewise, if agenti hasgi greater than the upper bound
of the active window, the distance will be minimized by setting
a(t) = 1.

Under the assumption that agents use myopic play, the active
window will coverC(N) infinitely often. The bounds of the active
window will also approachC(N) as time goes to infinity. Because
the size of the active window goes to zero as time goes to infin-
ity, the outcome of the wiki model will converge toC(N) and the
limit average payoff of all agents will be equal to the distance from
their goal toC(N). However, as seen in the proof of the following
theorem, even though all agents with goals other than the central
value will have their play converge, if an agent’s goal is the central
value, then the play of that agent will not converge even though his
average reward will converge to one.

THEOREM 1. For all ǫ > 0 there exists a timeT1 such that for

all t > T1,
˛

˛

˛

C(N) −
P

t

i=1 a(i)

t

˛

˛

˛

< ǫ

Although the proof of this theorem is complicated, it is roughly
composed of three subclaims. First, the active window will even-
tually coverC(N). Second, if the active window coversC(N) at
timet, it will again coverC(N) at some future time. Third, the dis-
tance from the active window’s endpoints toC(N) will decrease.

PROOF. If the active window is less thanC(N) at timet > T0,
the first time in which the agent (if there is one) whose goal is
C(N) is acting, then by the definition ofx in lemma 1, the active
window is less thanx/n. By lemma 1 there arex agents with
gi ≥ C(N), which is greater than the active window. Since there
are at leastx agents whose action will be1, Then at timet + kn,

The right bound of the active window will be≥ kx+
P

t

i=1 a(i)

t+kn
.

The limit ask goes to infinity isx/n so there exists some time in
which this quantity will be closer tox/n thanC(N) is, and the
right bound of the active window will passC(N). Let this time be
denoted asT2. A similar argument holds if the active window is
greater than or equal toC(N).

If C(N) is a partition point, then we’re done because once the
active window is between two agent’s goals, and no agent will ever
change their action from this point on under the myopic play rule
causing the active window to converge tox/n.

Denote the active window at timet as
ˆ

z
t
, z+1

t

˜

. If at time
t the active window is coveringC(N) and without loss of gen-
erality the active agent’s action is 0, then at timet + yn where
y = ⌈ t

2xt−2nz−n
⌉ the active window will again coverC(N).

Starting from our assignment ofy,

y(xt − nz − .5n) ≥
t

2
, (3)

yxt − ynz − .5yn ≥
t

2
, (4)

z + yx

t + yn
≥

z + .5

t
, (5)

thus the right bound of the active window is greater thanz+.5
t

.
Given that the agent’s action is 0, under the myopic play rule we
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Figure 1: Convergence for the set of agents with goalsG =
{.95, .90, .85, .75, .65} using myopic play.

know thatC(N) ≤ z+0.5
t

. This inequality and the inequality de-
duced from the value ofy, give us thatC(N) ≤ z+yx

t+yn
andC(N) is

covered at timet+yn. An analogous argument holds if the agent’s
action is 1.

We also note that for every1 ≤ y′ < y, the chosen endpoint of
the active window will be closer toC(N) than at timet. Assume
the agent’s action is zero and thus has chosenz/t under the myopic
rule as the closest point, thenC(N) < z+.5

t
. If at timey′ the active

window is not coveringC(N) we know thatz+y′x

t+y′n
< C(N), and

becausez/t < C(N) andC(N) ≤ x/n, then

z

t
≤

x

n
,

zt + y′nz ≤ zt + y′tx,

z

t
≤

z + y′x

t + y′n
,

showing that at timet + y′n the active window will be closer than
at timet.

Thus, if we letT1 be the maximum ofT2 and the first time greater
than⌈ 2n−1

2ǫ
⌉ such that the active window is again coveringC(n),

(which we have already proved will happen) then at timeT1 the
active window is coveringC(N). The length of the active window
is 1

T1
< ǫ, and the maximum distanceC(N) can be from the active

window is 1
2T1

. As we showed before, until the active window
again coversC(N) the distance toC(N) will only be less than at
time T1. Finally, once the active window again coversC(N) the
maximum distance will be1

2t′
< 1

2T1
.

We show the value of the outcome over time for an example set
of five agents in Figure 1. Although the convergence is far from
monotonic, it still converges with some regularity. For this set of
agents, the reader can check thatC(N) = .75. In Figures 2,3, and
4 we show the behavior for larger sets of agents with goals drawn
from a uniform distribution over[0, 1].

The convergence under the simple and easy to compute myopic
play rule is remarkable, but it is still unclear what the meaning of
the central value is, given that is it not the mean or median of the set
of agent goals. In the following lemma we clarify the connection
of the central value with the mean of agent goals. Generally, the
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Figure 2: Convergence for a set of 10 random agents
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Figure 3: Convergence for a set of 100 random agents
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Figure 4: Convergence for a set of 1000 random agents
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Figure 5: Possible mean values of the set of agent goals given
C(N), with |N | = 30

central value is closest to the mean of agent goals when the goals
are close to 0 or 1, and farthest when the central agent’s goal is
in the middle between 0 and 1. Specifically, the following lemma
allows for the greatest distance between the central value and the
mean whenx = ⌈n

2
⌉ and the greatest range for possible values of

the mean whenx = ⌊ 2n+1
4

⌋, as derived by basic calculus.

LEMMA 4. Let the central value for a set of agents beC(N)
such thatC(N) ∈ [x−1

n
, x

n
]. Then the mean of agent goals lies in

h

x2−x

n2 , 2xn−x2

n2

i

.

PROOF. First we prove the lower bound. By Lemma 1 there are
x agent goals greater thanC(N). The least value these goals can
take is x−1

n
and then − x goals less thanC(N) can all be zero

giving us a mean of
0(n−x)+x

x−1
n

n
= x2−x

n2 .
Likewise, for the upper bound, the greatest value the n-x agents

less thanC(N) can take on isx
n

and the other agents can take on the

value of 1. The mean in this case is
1(x)+(n−x) x

n

n
= 2xn−x2

n2

The above lemma makes clear that although there is a connection
between the central value and the mean of agent goals, these two
values can possibly be quite far apart (up to1/4 of the interval
distance) from each other. We graph an example of the bounds
where we have thirty agents in Figure 5. While joint process games
have many desirable properties, close convergence to the mean is
not guaranteed. But in situations where convergence to the mean is
not the goal, the central value provides an alternative that balances
the goals of extreme agents with the set of social partition points.

3.2.1 Continuous Action Space
We also note that all the previous lemmas up to this point directly

apply to the case where we have an action space of[0, 1]. The active
window can now be interpreted as the range of next round outcomes
the active agent can achieve. Theorem 1 can also be extended to
cover the continuous action space though a slight modification of
the proof of the subclaim that once the active window coversC(N),
it will again cover it.

3.3 Myopic Play and Nash Equilibrium
Not only under myopic play does the outcome converge but the

induced actions also form a stable point.

THEOREM 2. The set of strategies defined by the myopic play
rule form a Nash equilibrium.

PROOF. Let A = (a1, a2, . . . , an) be the set of strategies de-
fined by the myopic play rule for all possible action histories, in-
cluding histories that are not reached when the set of agents follow
strategy profileA. Consider anya′

i that agenti is considering. If
agenti hasgi = C(N) then it follows that under myopic play this
agent receives an average reward of1, the maximum possible, so
there is no profitable deviation.

Without loss of generality, assume that agenti is such thatgi <
C(N). Thus, by Lemma 3, and Theorem 1 there exists aT0 such
that for allt > T0, agent i’s action under the myopic play rule is 0.
Let the average reward for playeri when the strategy profile isA
be denotedri(A). If for all times t except when agenti is acting,
strategy profileA′ = (a1, a2, . . . , a

′
i, . . . , an) causes players to

take the same actions as underA, it then follows that,

ri(A) = lim
k→∞

Pk

j=1 r
(j)
i

k
, (6)

= lim
k→∞

Pk

j=T0
r
(j)
i

k
, (7)

= lim
k→∞

1 −

Pk

j=T0
oi − gi

k
, (8)

ri(A) − ri(A
′) = lim

k→∞

Pk

j=T0
o′i − oi

k
, (9)

(10)

and finally, because afterT0 agent i’s action is always0, then any
a′ 6= a will have some number of ones. Thus,oi < o′i, giving us
thatri(A) ≥ ri(A

′).
Now suppose thata′ causes an agent other than agenti to play a

different action in some round. Given that the length of the active
window approaches zero and that the agents use the myopic play
rule, all agents withgi less than the active window will play zero
and all agents withgi above the active window will play one. For
agenti to get a higher reward under actiona′ the active window
would have to be less thanC(N). All agents currently less than
C(N) can not cause the active window to move closer to zero since
they all have converged to playing all zeros. No agent≥ C(N) will
ever cause the active window to decrease belowC(N), as it would
lower their reward in the round they choose zero, violating myopic
play. Thus, agenti can never cause the outcome to decrease and
can never increase his utility by deviating. Because there is no
profitable deviation in all casesA forms a Nash equilibrium.

3.4 A Folk Theorem
In the previous section we saw one Nash equilibrium, namely

that defined by the myopic strategies. Can we somehow character-
izeall the Nash equilibria in these games? While we don’t quite do
this here, we do present a folk theorem which captures the payoffs
in all such equilibria.

Roughly speaking, the payoffs obtainable by playeri are any
rational values between his minimax value and1. Let

vi = 1 − max(gi −
1

n
,
n − 1

n
− gi),

wherevi is the reward playeri gets when all other players play min-
imax strategies against him, and playeri plays his best response. In
this joint process games, this will take the form of all players play-
ing 0 or 1 except player playeri who plays the opposite.

The following two definitions are used to characterize the pay-
offs obtainable.



DEFINITION 6 (ENFORCEABLE). A payoff profile
r = (r1, r2, . . . , rn) is enforceable if∀i ∈ N, ri ≥ vi.

DEFINITION 7 (FEASIBLE). A payoff profile
r = (r1, r2, . . . , rn) is feasible if there exist rational, nonnegative
valuesαa such that for alli, we can express1 ri as
P

a∈{0,1}n αa|gi − f(a)| with
P

a∈{0,1}n αa = 1.

Thus, a payoff profile is feasible if it is a convex and rational
combination of the possible one round (where a round isn time
steps) outcomes in our joint process game.

THEOREM 3 (FOLK THEOREM). If the payoff profile of a joint
process game isr = (r1, r2, . . . , rn) then:

1. If r is the payoff profile for any Nash equilibrium s, then for
playeri ri is enforceable.

2. If r is feasible and enforceable, then r is the payoff profile for
some Nash equilibrium

The proof follows the form of other folk theorems, similar to that
in [22]. To prove item one we show that an agent can never receive
less than1 − max(gi −

1
n
, n−1

n
− gi), in any equilibrium. The

proof of item two gives a construction of strategies that yields a
Nash equilibrium with payoff profile r.

PROOF. Part 1: Suppose r is not enforceable. Then there exists
somei such thatri < vi = 1−max(gi−

1
n
, n−1

n
−gi). However,

consider an alternative strategy fori: let i follow the myopic play
rule. The outcome can only be a distance more thanmax(gi −
1
n
, n−1

n
−gi) for a discrete number of time steps. The greatest value

thatmax(gi −
1
n
, n−1

n
− gi) can take on isn−1

n
and because agent

i performs an action everyn rounds, by following the myopic play
rule the distance will never be greater than this. Thus ifri < vi

thens can not be a Nash equilibrium.
Part 2: Becauser is a feasible, enforceable payoff profile, we

can write it asri =
P

a∈{0,1}n

za

y
|gi − f(a)| becauseαa is ratio-

nal andy is the least common denominator of all theαa. Because
the combination is convex, we havey =

P

a∈{0,1}n za.

Let (at) be a sequence binary values that cycles through each
a ∈ {0, 1}n (a binary sequence of player actions with length n)
with a total cycle lengthy, where eacha is repeated exactlyza

times. Let us define a strategysi of playeri to be the trigger version
of playing(at). If all other players play the action dictated byat in
their respective time times, playeri will play the action dictated to
him as well. However, if at any time some playerj deviates from
the sequence(at), then if gj < .5 all other agents will uniformly
play1 from that time onward. Likewise, ifgj ≥ .5 all other players
will play 0.

If everyone plays according to our dictated strategiessi, then the
payoff profile will simply ber by our construction of(at). How-
ever, if any player deviates, then they will receive a maximum pay-
off of 1−max(gi−

1
n
, n−1

n
−gi) for every subsequent cycle, giving

them a limit average reward of at mostvi. Sincer is enforceable,
vi ≤ ri and there is no profitable deviation.

Although the strategies produced by myopic play form a Nash
equilibrium, the folk theorem show that there are many more pos-
sible equilibria. Nevertheless, this characterization gives us more
insight into joint process games.

1{0, 1}n represents the set of possible stationary strategies for n
time steps of our infinite extensive form game

4. RELATED WORK
The related work can be divided into two relevant threads: game

theory and models created for specific applications.
In the group of work on wikis, most papers concentrate on

Wikipedia, the most prominent of all wikis. One important thread
of this work has been on how to understand the properties of the
social community that has sprung up around Wikipedia. There has
been comparisons to print media [9], estimations of the expertise
of Wikipedia authors[23], and studies of the elite verses common
users [10]. Others have researched how Wikipedia articles accrue
edits proportional to their previous edits [26] and even comparisons
across different language versions [19].

Another thread of research has been on how to improve the qual-
ity of Wikipedia through practical rule changes, community man-
agement, and user interface design. A large and diverse user base
seems to be correlated to the quality of articles [1] while the costs of
conflict and coordination [11] also go up with the population. More
general studies have been done on how policy influences communi-
ties with mass participation, and looks at examples from Wikipedia
to try to deduce design guidelines [12, 24]. Self-supervised infor-
mation extraction combined with innovative interface design was
studied in [25] and specifically designed to encourage communal
content creation.

The AI community has recently begun to leverage Wikipedia as a
means to solve problems in NLP and information retrieval, among
other things. In [28], Wikipedia is used to evaluates ontologies.
It has also been used to learn semantic relatedness and semantic
interpretation in [27, 8].

Our work on joint process games also has deep connections to
work from economics in social choice and voting. The myopic
action rule we use in joint process games is similar to fictitious
play [20] and the best response dynamics used in potential
games [14]. For a good overview of both see [22]. Fictitious play
does not apply here because we don’t have a stage game. Even
if we changed the model to be a repeated normal form game, the
stage game payoffs would be dependent on the history and change
every round, so the Nash equilibrium would also change. Further,
even if fictitious play did apply, none of the known conditions [3]
for convergence apply here.

There are two related areas that are worth speaking in depth
about. The first is Duncan Black’s work [4], now commonly re-
ferred to as median voter theory [6]. Variations of median voter
theory[5, 18] have suggested models explaining why voting for ex-
treme parties with no chance of winning can benefit the voters by
allowing them to communicate and influence the subsequent po-
sitions of the winning parties in repeated election settings. Other
work has shown how voting can be a process of information aggre-
gation, like Condorcet’s jury theorem[17, 16], and the work view-
ing voting as maximum likelihood estimation [7].

The setting for median voter theory is as follows. Let there be a
set of voters with single peaked preferences, i.e. there exists some
linear ordering of alternatives such that for every voter, there is a
point in the linear ordering with maximum utility, and moving in
either direction along this fixed linear ordering monotonically de-
creases the voter’s utility. The strong form of the median voter
theorem roughly states that the median voter always gets his most
preferred candidate. Consequently, when using the majority rule,
if all voters vote for the candidate(alternative) with position closest
to their own peak preference, and if there are only two candidates,
then the candidates maximize their votes if they commit to the pol-
icy position preferred by the median voter.

In joint process games, when we use the Euclidean distance from
outcome to goal to determine each agent’s reward, the agent’s pref-



erences have the singled peaked property. And using the myopic
play rule has a limit outcome based on the median of the agents and
a set of partition points. However, the differences in turn-taking,
length of games, and payoffs are too great between the joint pro-
cess model and median voter theory for one to be a special case of
the other.

But the key take-away of the median voter theorem also holds in
our setting; if it is possible to influence the goals of the agents, then
the only way to change the outcome is the influence the goal of the
median agent and those agents close to the median agent.

The second area we will speak in depth about is Moulin’s [15]
work on strategy proof voting rules in single-peaked domains. Moulin
proves that the set of strategy-proof, anonymous, and efficient vot-
ing rules in this domain is exactly equal to the set of voting rules
that can be expressed as any function that chooses the median of
then voter’s preferences (represented as as the real valued point of
the peak) and(a1, a2, . . . , an−1) whereai ∈ R ∪ {−∞,∞}.

If we let (a1, a2, . . . , an−1) = ( 1
n
, 2

n
, . . . , n−1

n
), then the wiki

joint process game has the same outcome in the limit as the strategy-
proof, anonymous, and efficient voting rule in the domain of single
peaked preferences. The key differences are that in Moulin’s voting
rule, the agents communicate by expressing a real value between
0 and 1 and reveal their true preference. In joint process games
agents have a very restricted action space composed of only two
different actions and do not have to fully reveal their preferences
to achieve the same outcome. For example, in the instance of a
joint process game shown in Figure 1, the agent with a goal of.65
only takes action0 throughout the entire process, and other than
revealing that his goal is belowC(N), this agent reveals almost
nothing! We conjecture that otherf functions determining the out-
come of a joint process game will correspond to other assignments
of (a1, a2, . . . , an−1) in Moulin’s model.

5. CONCLUSION
This paper has made the following three broad contributions.

First we introduced joint process games. These games are a new
model for games with alternating control and a state determined by
the history of actions. They capture situations without a definite
end, like aggregate ratings and wiki updates. To our knowledge
this is the first proposed model to study the theoretical behavior of
players updating a wiki article.

Second, we defined the central value of a set of points, and
proved that under the simple myopic play rule our joint process
game converges to the central value. The actions of all players
(except a possible central value player) converge to play uniformly
zero or one after sufficient time.

Third, we proved that the joint strategy defined by the myopic
play rule is a Nash equilibrium. In addition we characterized all
other payoff profiles obtainable in some Nash equilibrium by prov-
ing a folk theorem for joint process games.

For future work we hope to quantify how many bits of informa-
tion agents reveal when using the myopic play rule, and investigate
if there are any ways of reducing this. We also are working on char-
actering all Nash and subgame perfect equilibrium of this joint pro-
cess game. Finally, we are looking at other possible functionsf(·)
mapping history to outcome to analyze their convergence proper-
ties and determine if every voting rule in Moulin’s family of voting
rules has a corresponding joint process game.
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